Algorithm Derivation of Orthotropic Material Simulation by Non-Linear FEM

Yan Wenyuan

May 11, 2016

1 Introduction

Some text goes here.

2 Algorithm Derivation

Similar to the transversely isotropic materials strain energy , we can split the orthotropic material strain energy into

$$
\begin{align*}
\Psi & =\Psi_{\text {iso }}+\Psi_{\text {ortho }} \tag{1}\\
\Psi_{\text {ortho }} & =w_{1}\left(E_{1} ; \overline{\lambda_{1}}\right)+w_{2}\left(E_{2} ; \overline{\lambda_{2}}\right)+w_{3}\left(E_{3} ; \overline{\lambda_{3}}\right) \tag{2}
\end{align*}
$$

$\Psi_{i s o}$ is isotropic part energy, and $\Psi_{\text {ortho }}$ is orthotropic part energy; $w_{1}\left(E_{1} ; \overline{\lambda_{1}}\right), w_{2}\left(E_{2} ; \overline{\lambda_{2}}\right)$, $w_{3}\left(E_{3} ; \overline{\lambda_{3}}\right)$ are all 1D energy function, to account for the energy of the three orthotropic material axes; $\bar{\lambda}_{i}$ is the strain along the three orthotropic material axes, and $\bar{\lambda}_{i}=$ $\left\|F m_{i}\right\|_{2}$.

For orthotropic material, we also can compute the tangent stiffness matrix following Irving' s work [Irving et al. 2004]. The gradient of the elastic force of a tetrahedron element is:

$$
\begin{equation*}
\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{F}} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}=\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{F}} \boldsymbol{B}_{\boldsymbol{m}}\right) \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}, \tag{3}
\end{equation*}
$$

where $x \in \boldsymbol{R}^{12}$, is the displacement of the four vertices. $F=D s(\boldsymbol{x}) D m^{-1}$, so $\partial \boldsymbol{F} / \partial \boldsymbol{x}$ is constant, and $\boldsymbol{B}_{\boldsymbol{m}}$ is also constant during the simulation. So, we need to compute $\partial \boldsymbol{P} / \partial \boldsymbol{F}$ in each time step.

Since \mathbf{P} is defined using SVD, we can compute $\partial \boldsymbol{P} / \partial \boldsymbol{F}$ using product rule as follows

$$
\begin{equation*}
\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{F}_{i j}}=\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{F}_{i j}} P(\hat{\boldsymbol{F}}) V^{T}+U \frac{\partial \boldsymbol{P}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{i j}} V^{T}+U P(\hat{\boldsymbol{F}}) \frac{\partial \boldsymbol{V}^{\boldsymbol{T}}}{\partial \boldsymbol{F}_{i j}} \tag{4}
\end{equation*}
$$

The section 2.1, section 2.2 and section 2.3 will derivate the expression of $P(\hat{\boldsymbol{F}}), \partial \boldsymbol{P}(\hat{\boldsymbol{F}}) / \partial \boldsymbol{F}_{i j}$ $\partial \boldsymbol{U} / \boldsymbol{F}_{i j}$ and $\partial \boldsymbol{V}^{\boldsymbol{T}} / \partial \boldsymbol{F}_{i j}$.

2.1 $P(\hat{\boldsymbol{F}})$

For orthotropic material, $P(\hat{\boldsymbol{F}})$ can be computed as follows

$$
\begin{equation*}
P(\hat{\boldsymbol{F}})=\frac{\partial \boldsymbol{\Psi}(\hat{\boldsymbol{F}})}{\partial \hat{\boldsymbol{F}}}=\frac{\partial \boldsymbol{\Psi}_{\boldsymbol{i s o}}(\hat{\boldsymbol{F}})}{\partial \hat{\boldsymbol{F}}}+\frac{\partial \boldsymbol{\Psi}_{\boldsymbol{o r t h o}}(\hat{\boldsymbol{F}})}{\partial \hat{\boldsymbol{F}}}=P_{i s o}(\hat{\boldsymbol{F}})+P_{\text {ortho }}(\hat{\boldsymbol{F}}) \tag{5}
\end{equation*}
$$

and we put the equation(2) in (5), we can get the $P_{\text {ortho }}(\hat{\boldsymbol{F}})$ expression,

$$
\begin{equation*}
P_{\text {ortho }}(\hat{\boldsymbol{F}})=\sum \frac{w_{i}^{\prime}\left(\bar{\lambda}_{i}\right)}{\bar{\lambda}_{i}} \hat{\boldsymbol{F}}\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \otimes\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \tag{6}
\end{equation*}
$$

where \otimes is tensor product operation, $x \otimes y=x y^{T}$. Similarly, for orthotropic material, $\partial \boldsymbol{P}(\hat{\boldsymbol{F}}) / \partial \boldsymbol{F}_{i j}$ can be computed as follows

$$
\begin{align*}
\frac{\partial \boldsymbol{P}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{i j}} & =\frac{\partial \boldsymbol{P}_{\boldsymbol{i s o}}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{i j}}+\frac{\partial \boldsymbol{P}_{\boldsymbol{o r t h o}}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{i j}} \tag{7}\\
\frac{\partial \boldsymbol{P}_{\boldsymbol{o r t h o}}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{i j}} & =\sum\left(\frac{w_{i}^{\prime}\left(\bar{\lambda}_{i}\right)}{\bar{\lambda}_{i}} \frac{\partial \hat{\boldsymbol{F}}}{\partial \boldsymbol{F}_{i j}}\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \otimes\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right)\right. \\
& +\hat{\boldsymbol{F}} \frac{w_{i}^{\prime}\left(\bar{\lambda}_{i}\right) \bar{\lambda}_{i}-w_{i}^{\prime}\left(\bar{\lambda}_{i}\right)}{\bar{\lambda}_{i}^{2}} \frac{\partial \bar{\lambda}_{i}}{\partial \boldsymbol{F}_{i j}}\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \otimes\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \tag{8}\\
& +\frac{w_{i}^{\prime}\left(\bar{\lambda}_{i}\right)}{\bar{\lambda}_{i}} \hat{\boldsymbol{F}}\left(\left(\frac{\boldsymbol{V}^{\boldsymbol{T}}}{\boldsymbol{F}_{i j}} \boldsymbol{m}_{\boldsymbol{i}}\right) \otimes\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right)+\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{m}_{\boldsymbol{i}}\right) \otimes\left(\frac{\boldsymbol{V}^{\boldsymbol{T}}}{\boldsymbol{F}_{i j}} \boldsymbol{m}_{\boldsymbol{i}}\right)\right) \\
\frac{\partial \bar{\lambda}_{i}}{\partial \boldsymbol{F}_{i j}} & =\frac{1}{2 \bar{\lambda}_{i}} \boldsymbol{m}_{\boldsymbol{i}}^{T} \frac{\partial \boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{F}}{\partial \boldsymbol{F}_{\boldsymbol{i j}}} \boldsymbol{m}_{\boldsymbol{i}}, \quad \frac{\partial \boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{F}}{\partial \boldsymbol{F}_{\boldsymbol{i}}}=F^{i, j}+\left(F^{i, j}\right)^{T} \tag{9}
\end{align*}
$$

where $F^{i, j}$ is a matrix with all the elements 0 , expect the (i, j) element equals $\boldsymbol{F}_{i j}$, and $\partial \hat{\boldsymbol{F}} / \partial \boldsymbol{F}_{i j}$ is a diagonal matrix, and proved

$$
\begin{equation*}
\operatorname{diag}\left(\partial \hat{\boldsymbol{F}} / \partial \boldsymbol{F}_{i j}\right)=\operatorname{diag}\left(U^{T}\left(\partial \boldsymbol{F} / \partial \boldsymbol{F}_{i j}\right) V\right) \tag{10}
\end{equation*}
$$

$2.2 \partial \boldsymbol{P}(\hat{\boldsymbol{F}}) / \partial \boldsymbol{F}_{i j}$

Some text goes here.
$2.3 \quad \partial \boldsymbol{U} / \boldsymbol{F}_{i j}$ and $\partial \boldsymbol{V}^{\boldsymbol{T}} / \partial \boldsymbol{F}_{i j}$

Some text goes here.

3 Key Points

3.1 1D energy function w_{i}

Some text goes here.
3.2 The isotropic term energy $\Psi_{\text {iso }}$

Some text goes here.

