Algorithm Derivation of Orthotropic Material Simulation by Non-Linear FEM

Yan Wenyuan

May 11, 2016

1 Introduction

Some text goes here.

2 Algorithm Derivation

Similar to the transversely isotropic materials strain energy , we can split the orthotropic material strain energy into

$$\Psi = \Psi_{iso} + \Psi_{ortho} \tag{1}$$

$$\Psi_{ortho} = w_1(E_1; \bar{\lambda_1}) + w_2(E_2; \bar{\lambda_2}) + w_3(E_3; \bar{\lambda_3})$$
(2)

 Ψ_{iso} is isotropic part energy, and Ψ_{ortho} is orthotropic part energy; $w_1(E_1; \bar{\lambda}_1), w_2(E_2; \bar{\lambda}_2), w_3(E_3; \bar{\lambda}_3)$ are all 1D energy function, to account for the energy of the three orthotropic material axes; $\bar{\lambda}_i$ is the strain along the three orthotropic material axes, and $\bar{\lambda}_i = ||Fm_i||_2$.

For orthotropic material, we also can compute the tangent stiffness matrix following Irving's work [Irving et al. 2004]. The gradient of the elastic force of a tetrahedron element is:

$$\frac{\partial G}{\partial x} = \frac{\partial G}{\partial F} \frac{\partial F}{\partial x} = \left(\frac{\partial P}{\partial F} B_m\right) \frac{\partial F}{\partial x},\tag{3}$$

where $x \in \mathbf{R}^{12}$, is the displacement of the four vertices. $F = Ds(\mathbf{x})Dm^{-1}$, so $\partial \mathbf{F}/\partial \mathbf{x}$ is constant, and \mathbf{B}_m is also constant during the simulation. So, we need to compute $\partial \mathbf{P}/\partial \mathbf{F}$ in each time step.

Since **P** is defined using SVD, we can compute $\partial P / \partial F$ using product rule as follows

$$\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{F}_{ij}} = \frac{\partial \boldsymbol{U}}{\partial \boldsymbol{F}_{ij}} P(\hat{\boldsymbol{F}}) V^T + U \frac{\partial \boldsymbol{P}(\boldsymbol{F})}{\partial \boldsymbol{F}_{ij}} V^T + U P(\hat{\boldsymbol{F}}) \frac{\partial \boldsymbol{V}^T}{\partial \boldsymbol{F}_{ij}}$$
(4)

The section 2.1, section 2.2 and section 2.3 will derivate the expression of $P(\hat{F})$, $\partial P(\hat{F})/\partial F_{ij}$ $\partial U/F_{ij}$ and $\partial V^T/\partial F_{ij}$.

2.1
$$P(\hat{F})$$

For orthotropic material, $P(\hat{F})$ can be computed as follows

$$P(\hat{F}) = \frac{\partial \Psi(\hat{F})}{\partial \hat{F}} = \frac{\partial \Psi_{iso}(\hat{F})}{\partial \hat{F}} + \frac{\partial \Psi_{ortho}(\hat{F})}{\partial \hat{F}} = P_{iso}(\hat{F}) + P_{ortho}(\hat{F}), \quad (5)$$

and we put the equation(2) in (5), we can get the $P_{ortho}(\hat{F})$ expression,

$$P_{ortho}(\hat{F}) = \sum \frac{w'_i(\bar{\lambda}_i)}{\bar{\lambda}_i} \hat{F}(V^T m_i) \otimes (V^T m_i)$$
(6)

where \otimes is tensor product operation, $x \otimes y = xy^T$. Similarly, for orthotropic material, $\partial P(\hat{F})/\partial F_{ij}$ can be computed as follows

$$\frac{\partial P(\hat{F})}{\partial F_{ij}} = \frac{\partial P_{iso}(\hat{F})}{\partial F_{ij}} + \frac{\partial P_{ortho}(\hat{F})}{\partial F_{ij}}$$
(7)

$$\frac{\partial \boldsymbol{P_{ortho}}(\hat{\boldsymbol{F}})}{\partial \boldsymbol{F}_{ij}} = \sum \left(\frac{w_i'(\bar{\lambda}_i)}{\bar{\lambda}_i} \frac{\partial \hat{\boldsymbol{F}}}{\partial \boldsymbol{F}_{ij}} (\boldsymbol{V^T} \boldsymbol{m}_i) \otimes (\boldsymbol{V^T} \boldsymbol{m}_i) \right. \\
\left. + \hat{\boldsymbol{F}} \frac{w_i'(\bar{\lambda}_i)\bar{\lambda}_i - w_i'(\bar{\lambda}_i)}{\bar{\lambda}_i^2} \frac{\partial \bar{\lambda}_i}{\partial \boldsymbol{F}_{ij}} (\boldsymbol{V^T} \boldsymbol{m}_i) \otimes (\boldsymbol{V^T} \boldsymbol{m}_i) \right. \\
\left. + \frac{w_i'(\bar{\lambda}_i)}{\bar{\lambda}_i} \hat{\boldsymbol{F}} \left((\frac{\boldsymbol{V^T}}{\boldsymbol{F}_{ij}} \boldsymbol{m}_i) \otimes (\boldsymbol{V^T} \boldsymbol{m}_i) + (\boldsymbol{V^T} \boldsymbol{m}_i) \otimes (\frac{\boldsymbol{V^T}}{\boldsymbol{F}_{ij}} \boldsymbol{m}_i) \right) \\
\left. \frac{\partial \bar{\lambda}_i}{\partial \boldsymbol{F}_{ij}} = \frac{1}{2\bar{\lambda}_i} \boldsymbol{m}_i^T \frac{\partial \boldsymbol{F^T} \boldsymbol{F}}{\partial \boldsymbol{F}_{ij}} \boldsymbol{m}_i, \qquad \frac{\partial \boldsymbol{F^T} \boldsymbol{F}}{\partial \boldsymbol{F}_{ij}} = F^{i,j} + (F^{i,j})^T \quad (9)$$

where $F^{i,j}$ is a matrix with all the elements 0, expect the (i, j) element equals F_{ij} , and $\partial \hat{F} / \partial F_{ij}$ is a diagonal matrix, and proved

$$\operatorname{diag}(\partial \hat{\boldsymbol{F}} / \partial \boldsymbol{F}_{ij}) = \operatorname{diag}(U^T (\partial \boldsymbol{F} / \partial \boldsymbol{F}_{ij}) V)$$
(10)

2.2 $\partial P(\hat{F})/\partial F_{ij}$

Some text goes here.

2.3 $\partial U/F_{ij}$ and $\partial V^T/\partial F_{ij}$

Some text goes here.

3 Key Points

3.1 1D energy function w_i

Some text goes here.

3.2 The isotropic term energy Ψ_{iso}

Some text goes here.